(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题4分,第(3)小题8分.
已知数列是公差不为
的等差数列,
数列
是等比数列,且
,
,数列
的前
项和为
,记点
.
(1)求数列的通项公式;
(2)证明:点在同一直线
上,并求出直线
方程;
(3)若对
恒成立,求
的最小值.
(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分.
如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是
,双曲线的左、右顶点
、
是该圆与
轴的交点,双曲线与半圆相交于与
轴平行的直径的两端点.
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为、
,试在“8”字形曲线上求点
,使得
是直角.
(本题满分14分)本题共2小题,第(1)小题8分,第(2)小题6分.
如图,摩天轮上一点在
时刻距离地面高度满足
,
,已知某摩天轮的半径为
米,点
距地面的高度为
米,摩天轮做匀速转动,每
分钟转一圈,点
的起始位置在摩天轮的最低点处.
(1)根据条件写出(米)关于
(分钟)的解析式;
(2)在摩天轮转动的一圈内,有多长时间点距离地面超过
米?
(本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.
如图所示,在长方体中,
,
,
,
为棱
上一点.
(1)若,求异面直线
和
所成角的正切值;
(2)若,求证
平面
.
(本小题满分14分)
设函数
(I)当时,求函数
的单调区间;
(II)若对任意恒成立,求实数
的最小值;
(III)设是函数
图象上任意不同两点,线段AB中点为C
,直线AB的斜率为k.证明:
.