游客
题文

已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

求过两直线的交点且与第一条直线垂直的直线方程

已知椭圆的长轴长为2a,焦点是F1(-,0)、F2(,0),点F1到直线x=-的距离为,过点F2且倾斜角为锐角的直线l与椭圆交于AB两点,使得|F2B|=3|F2A|.
(1)求椭圆的方程;
(2)求直线l的方程.

已知椭圆x2+(m+3)y2m(m>0)的离心率e,求m的值及椭圆的长轴和短轴的长及顶点坐标.

自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

已知的顶点边上的中线所在的直线方程为边上的高所在直线的方程为.
(1)求的顶点的坐标;
(2)若圆经过不同的三点,且斜率为的直线与圆相切于点,求圆的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号