围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x米,总费用为y(单位:元).
(1)将y表示为x的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,
并求出最小总费用.
如图1,在直角梯形中,
,
是
的中点,
是AC与
的交点,将
沿
折起到图2中
的位置,得到四棱锥
.
(Ⅰ)证明:平面
;
(Ⅱ)当平面平面
时,四棱锥
的体积为
,求
的值.
如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.
(1)证明:PE⊥DE;
(2)如果PA=2,求异面直线AE与PD所成的角的大小.
如图,在四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(1)证明:EF∥平面PAD;
(2)求三棱锥EABC的体积V.
四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.
(1)求四面体ABCD的体积;
(2)证明:四边形EFGH是矩形.
已知函数,
,对于
,
恒成立.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数.
①证明:函数在区间在
上是增函数;
②是否存在正实数,当
时函数
的值域为
.若存在,求出
的值,若不存在,则说明理由.