设椭圆:
的离心率为
,点
(
,0),
(0,
),原点
到直线
的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为(
,0),点
在椭圆
上(与
、
均不重合),点
在直线
上,若直线
的方程为
,且
,试求直线
的方程.
如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,
时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,
和
的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设
(弧度),试用
来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
已知函数(
为实数,
),
,⑴若
,且函数
的值域为
,求
的表达式;
⑵设,且函数
为偶函数,求证:
.
已知函数的最小正周期为
.
⑴求函数的对称轴方程;
⑵设,
,求
的值.
已知,命题
,命题
.⑴若命题
为真命题,求实数
的取值范围;⑵若命题
为真命题,命题
为假命题,求实数
的取值范围.
已知数列为
,
表示
,
.
⑴若数列为等比数列
,求
;
⑵若数列为等差数列
,求
.