(本小题满分14分)已知数列﹛﹜满足:
.(Ⅰ)求数列﹛
﹜的通项公式;(Ⅱ)设
,求
如图,在等腰梯形ABCD中,AB∥DC,AB = 4,CD = 2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO = 2,EA∥PO.
(1)求证:BD⊥平面EAC;
(2)求二面角E—AC—P的平面角的余弦值.
“上海世博会”将于2010年5月1日至10月31日在上海举行。世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,其中陈列的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为此,上海世博会事物协调局将举办“中国2010年上海世博会‘中国馆·贵宾厅’艺术品方案征集”活动.某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应征,假设这四件代表作中中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为
.假定这四件作品是否入选相互没有影响.
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率;
(2)设该地美术馆选送的四件代表作中入选“中国馆·贵宾厅”的作品件数为随机变量,求
的数学期望.
已知向量.
(1)求函数的最大值;
(2)在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,且△ABC的面积为3,
a的值.
己知.
(Ⅰ)若,函数
在其定义域内是增函数,求
的取值范围;
(Ⅱ)当时,证明函数
只有一个零点;
(Ⅲ)若的图象与
轴交于
两点,
中点为
,求证:
.
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
相交于不同的两点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,满足
?若存在,求出直线
的方程;若不存在,请说明理由.