正三棱柱中,E为AC中点
(1)求证:
(2)求证:,
数列满足
,
.(1)求
通项公式
;(2)令
,数列
前
项和为
,求证:当
时,
;(3)证明:
.
设数列{a}的首项a
=1,前n项和S
满足关系式:3tS
-(2t+3)S
=3t(t>0,n=2,3,4…).(1)求证:数列{a
}是等比数列;(2)设数列{a
}的公比为f(t),若数列{b
}满足:b
=1,b
=f(
)(n=2,3,4…),求
;(3) 对于(2)中的数列{b
},求b
b
-b
b
+b
b
-…+(-1)
b
b
的和。
已知函数(1)求函数
在区间[1,
]上的最大值、最小值;
(2)求证:在区间(1,)上,函数
图象在函数
图象的下方;
(3)设函数,求证:
≥
。(
)
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. 0(1) 问各班被抽取的学生人数各为多少人?
(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.