在中,
分别为角
的对边,且满足
.
(1)求角的值;
(2)若,设角
的大小为
的周长为
,求
的最大值.
已知点列满足:
,其中
,又已知
,
.
(I)若,求
的表达式;
(II)已知点B,记
,且
成立,试求a的取值范围;
(III)设(2)中的数列的前n项和为
,试求:
。
已知点为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点
,使得
总能被
轴平分
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间
上的最小值.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
频数 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高频数分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
频数 |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求该校男生的人数并完成下面频率分布直方图;
(II)估计该校学生身高在的概率;
(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185
190cm之间的概率。
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.