已知抛物线y2=4ax(0<a<1=的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点.(1)求|MF|+|NF|的值;(2)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,若不存在,说明理由.
设函数 (1)求的单调递增区间; (2)当时,求的值域。
定义:若对定义域内的任意两个,均有成立,则称函数是上的“平缓函数”。 1.判断和的单调性并证明; 2.判断和是否为R上的“平缓函数”,并说明理由; 3.若数列中,总有。
已知函数f(x)=xm+ax的导函数f′(x)=2x+1,,点An(n, Sn)在函数y="f(x)" (n∈N*)的图像上 , (1)求证:数列为等差数列;(2)设,求数列的前项和
设集合; (1)若,求的取值范围; (2)求函数的最值
在中,分别是角的对边,向量,,且. 1.求角的大小; 设,且的最小正周期为,求在区间上的单调增区间及所有对称轴方程
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号