游客
题文

(本小题满分15分)已知函数.
(1)用定义证明:不论为何实数上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题满分12分)
(Ⅰ)已知某椭圆的左右焦点分别为,且经过点,求该椭圆的标准方程以及离心率;
(Ⅱ)某圆锥曲线以坐标轴为对称轴,中心为坐标原点,且过点,求该曲线的标准方程、焦点以及离心率;

(本小题满分10分)
已知命题“方程表示的曲线是椭圆”,命题“方程表示的曲线是双曲线”.且为真命题,为假命题,求实数的取值范围.

(本小题满分14分)如图,已知四边形是正方形,平面,//,,,,分别为,,的中点.
(Ⅰ)求证:平面FGH //平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使平面?若存在,求出线段的长;若不存在,请说明理由.

(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD
(1)求证:SO⊥平面ABCD;
(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.

(本小题满分12分)直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求a的值;
(2)若l不经过第二象限,求实数a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号