一个质量为m,电荷量为-q,不计重力的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和穿过第一象限的时间。
摩天大楼中一部直通高层的客运电梯,行程超过百米。电梯的简化模型如1所示。考虑安全、舒适、省时等因索,电梯的加速度a是随时间t变化的。已知电梯在t = 0时由静止开始上升,a - t图像如图2所示。电梯总质最m = 2.0× kg。忽略一切阻力,重力加速度g取10m/s2。
(1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2;
(2)类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v - t图像求位移的方法。请你借鉴此方法,对比加速度的和速度的定义,根据图2所示a - t图像,求电梯在第1s内的速度改变量△v1和第2s末的速率v2;
(3)求电梯以最大速率上升时,拉力做功的功率p:再求在0~11s时间内,拉力和重力对电梯所做的总功W。
如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。导轨上端接有一平行板电容器,电容为C。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系。
一长木板在水平地面上运动,在t=0时刻将一相对于地面精致的物块轻放到木板上,以后木板运动的速度-时间图像如图所示。己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。取重力加速度的大小g=10m/s2求:
(1)物块与木板间;木板与地面间的动摩擦因数:
(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.
如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。
质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数=0.2,g取10m/s²,求:
(1)物块在力F作用过程发生位移的大小;
(2)撤去力F后物块继续滑动的时间t。