游客
题文

某小卖部为了了解热茶销售量与气温之间的关系,随机统机并制作了某6天卖出的热茶的杯数与当天气温的对比表:

气温(℃)
26
18
13
10
4

杯数
20
24
34
38
50
64

画出散点图并判断热茶销售量与气温之间是否具有线性相关关系

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知函数 f ( x ) = x 2 t - 2 t ( x 2 + x ) + x 2 + 2 t 2 + 1 g ( x ) = 1 2 f ( x )
(I)证明:当 t < 2 2 时, g ( x ) R 上是增函数;
(II)对于给定的闭区间 [ a , b ] ,试说明存在实数 k ,当 t > k 时, g ( x ) 在闭区间 [ a , b ] 上是减函数;
(III)证明: f ( x ) 3 2

已知数列 a n b n 与函数 f ( x ) g ( x ) x R 满足条件: a n = b n f ( b n ) = g ( b n + 1 ) .( n N * )

(I)若 f ( x ) t x + 1 , t 0 , t 2 , g ( x ) = 2 x f ( b ) g ( b ) l i m n a n 存在,求 x 的取值范围;
(II)若函数 y = f ( x ) R 上的增函数, g ( x ) = f - 1 ( x ) b = 1 f ( 1 ) < 1 ,证明对任意 n N * l i m n a n (用 t 表示).

已知正三角形 O A B 的三个顶点都在抛物线 y 2 = 2 x 上,其中 O 为坐标原点,设圆 C O A B 的内接圆(点 C 为圆心)
(I)求圆 C 的方程;
(II)设圆 M 的方程为 x - 4 - 7 cos θ 2 + y - 7 cos θ 2 = 1 ,过圆 M 上任意一点 P 分别作圆 C 的两条切线 P E , P F ,切点为 E , F ,求 C E , C F 的最大值和最小值.

某企业准备投产一批特殊型号的产品,已知该种产品的成本 C 与产量 q 的函数关系式为 C = q 3 3 - 3 q 2 + 20 q + 10 q > 0 该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格 p 与产量 q 的函数关系式如下表所示:

image.png

L 1 , L 2 , L 3 分别表示市场情形好、中差时的利润,随机变量 ξ k ,表示当产量为 q ,而市场前景无法确定的利润.
(I)分别求利润 L 1 , L 2 , L 3 与产量 q 的函数关系式;
(II)当产量 q 确定时,求期望 E ξ k
(III)试问产量 q 取何值时, E ξ k 取得最大值.

如图,在直三棱柱 A B C - A 1 B 1 C 1 中, A C B = 90 ° A C = B C = a D , E 分别为棱 A B , B C 的中点, M 为棱 A A 1 上的点,二面角 M - D E - A 30 °
(I)证明: A 1 B 1 C 1 D
(II)求 M A 的长,并求点 C 到平面 M D E 的距离.

image.png

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号