如图,在直角坐标系中,一次函数y=kx+b的图象与反比例函数的图象交于A(-2,1)、B(1,n)两点。
(1)求m、n 的值;
(2)求上述反比例函数和一次函数的表达式;
(3)求△AOB的面积;
(4)当反比例函数大于一次函数时,x的取值范围。
某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:
(1)请将条形统计图补全;
(2)获得一等奖的同学中有 来自七年级,有 来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.
如图,直线 , 平分 , ,求 的度数.
如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点(点 在点 的左侧),与 轴交于点 ,对称轴与 轴交于点 ,点 在抛物线上.
(1)求直线 的解析式;
(2)点 为直线 下方抛物线上的一点,连接 , .当 的面积最大时,连接 , ,点 是线段 的中点,点 是 上的一点,点 是 上的一点,求 的最小值;
(3)点 是线段 的中点,将抛物线 沿 轴正方向平移得到新抛物线 , 经过点 , 的顶点为点 .在新抛物线 的对称轴上,是否存在点 ,使得 为等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
对任意一个三位数 ,如果 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为 .例如 ,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为 , ,所以 .
(1)计算: , ;
(2)若 , 都是“相异数”,其中 , , , , 都是正整数),规定: ,当 时,求 的最大值.
如图, 中, , ,点 是 上一点,连接 .
(1)如图1,若 , ,求 的长;
(2)如图2,点 是线段 延长线上一点,过点 作 于点 ,连接 、 ,当 时,求证: .