设计算法输出1000以内被5和7整除的所有正数,并画出流程图.
(本小题满分14分)
如图,沿等腰直角三角形的中位线
,将平面
折起,平面
⊥平面
,得到四棱锥
,
,设
、
的中点分别为
、
,
(1)求证:平面⊥平面
(2)求证:
(3)求平面与平面
所成锐二面角的余弦值。
(本小题满分12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得
分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率为
,且各局胜负相互独立.若第二局比赛结束时比赛停止的概率为
.
(1)求的值;
(2)设表示比赛停止时比赛的局数,求随机变量
的分布列和数学期望
。
(本小题满分14分)如图所示,已知以点为圆心的圆与直线
相切.过点
的动直线
与圆
相交于
,
两点,
是
的中点,直线
与
相交于点
.
(1)求圆的方程;
(2)当时,求直线
的方程.
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
(本小题满分13分)已知以点为圆心的圆与
轴交于点
、
,与
轴交于点
、
,其中
为原点.
(1)求证:△的面积为定值;
(2)设直线与圆
交于点
、
, 若
,求圆
的方程.
(本小题满分12分)为了了解某市居民的用水量,通过抽样获得了100位居民的月均用水量下图是调查结果的频率直方图.
(1)估计该样本的平均数和中位数;(结果精确到0.01);
(2)由(1)中结果估算该市12万居民的月均用水总量。