如图,已知:椭圆的中心为
,长轴的两个端点为
,右焦点为
,
.若椭圆
经过点
,
在
上的射影为
,且△
的面积为5.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知圆:
=1,直线
=1,试证明:当点
在椭圆
上
运动时,直线与圆
恒相交;并求直线
被圆
截得的弦长的取值范围.
已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数.
(1)求f(x)的表达式;
(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;
(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.
已知函数f(x)=x3-x2+bx+c.
(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;
(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.
计算下列定积分
(1)x(x+1)dx;
(2) (e2x+
)dx;
(3) sin2xdx.
已知函数f(x)=,x∈[0,2].
(1)求f(x)的值域;
(2)设a≠0,函数g(x)=ax3-a2x,x∈[0,2].若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0.求实数a的取值范围.
设a>0,函数f(x)=,b为常数.
(1)证明:函数f(x)的极大值点和极小值点各有一个;
(2)若函数f(x)的极大值为1,极小值为-1,试求a的值.