如图,已知:椭圆的中心为,长轴的两个端点为,右焦点为,.若椭圆经过点,在上的射影为,且△的面积为5.(Ⅰ)求椭圆的方程;(Ⅱ)已知圆:=1,直线=1,试证明:当点在椭圆上运动时,直线与圆恒相交;并求直线被圆截得的弦长的取值范围.
已知△ABC的顶点C在直线3x﹣y=0上,顶点A、B的坐标分别为(4,2),(0,5). (Ⅰ)求过点A且在x,y轴上的截距相等的直线方程; (Ⅱ)若△ABC的面积为10,求顶点C的坐标.
已知圆内有一点,过点作直线交圆于两点. (1)当经过圆心时,求直线的方程; (2)当弦被点平分时,写出直线的方程和弦的长.
如图:已知四棱锥中,是正方形,E是的中点,求证: (1)平面 (2)平面PBC⊥平面PCD
已知圆.求过点的圆的切线方程.
若圆经过点,求这个圆的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号