感知:利用图形中面积的等量关系可以得到某些数学公式.例如,根据图①甲,我们可以得到两数和的平方公式:,根据图①乙能得到的数学公式是 .
拓展:图②是由四个完全相同的直角三角形拼成的一个大正方形,直角三角形的两直角边长为,
,斜边长为
,利用图②中的面积的等量关系可以得到直角三角形的三边长之间的一个重要公式,这个公式是: ,这就是著名的勾股定理.请利用图②证明勾股定理.
应用:我国古代数学家赵爽的“勾股圆方图”是由四个完全相同的直角三角形与中间的一个小正方形拼成一个大正方形(如图③所示).如果大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边长分别为,那么
的值是 .
(本题8分)如图,ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
(本题6分)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2。
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。
(本题10分)如图,E为正方形ABCD对角线BD上的一点,且BE=BC=1.
(1)求∠DCE的度数;
(2)点P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.
(本题9分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
(本题8分)设点A的坐标(x,y),其中横坐标x可取-1,2,纵坐标y可取-1,1,2。
(1)求出点A的坐标的所有等可能结果(用树形图或列表法求解);
(2)求点A与点B(1,-1)关于原点对称的概率。