(本题满分13分) 如图,是离心率为
的椭圆,
:
(
)的左、右焦点,直线
:
将线段
分成两段,其长度之比为1 : 3.设
是
上的两个动点,线段
的中点
在直线
上,线段
的中垂线与
交于
两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点,使以
为直径的圆经过点
,若存在,求出
点坐标,若不存在,请说明理由.
(本小题满分12分)
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为
(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用
平均购地费用,平均购地费用
)
(本小题满分12分)
已知函数的定义域为集合
,
的值域为集合
,
.(1)求
和
; (2)求
、
.
(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,
求证:
;
(3)设,
为数列
的前
项和,求证:
。
(本小题满分14分)
如图,已知曲线与曲线
交于点
.直线
与曲线
分别相交于点
.
(Ⅰ)写出四边形的面
积
与
的函数关系
;
(Ⅱ)讨论的单调性,并求
的最大值.
(本小题满分14分)等比数列中,
分别是下表第一、二、三行中的某一个数,且
中的任何两个数不在下表的同一列.
第一列 |
第二列 |
第三列 |
|
第一行 |
3 |
2 |
10 |
第二行[来 |
6 |
4 |
14 |
第三行 |
9 |
8 |
18 |
(Ⅰ)求数列
的通项公式;
(Ⅱ)若数列满足
,记数列
的前n项和为
,证明