已知圆锥曲线C:
为参数)和定点
,
是此圆锥曲线的左、右焦点。
(1)以原点O为极点,以x轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;
(2)经过点,且与直线
垂直的直线
交此圆锥曲线于
两点,求
的值.
已知圆:
,直线
与圆
相交于
,
两点.
(Ⅰ)若直线过点
,且
,求直线
的方程;
(Ⅱ)若直线的斜率为
,且以弦
为直径的圆经过原点,求直线
的方程.
如图,在底面为平行四边形的四棱锥中,
,
平面
,且
,点
是
的中点.
(Ⅰ)求证:;
(Ⅱ)求证:平面
;
(Ⅲ)若,求点
到平面
的距离.
设有数列{an},a1=,若以a1,a2,a3,……,an中相邻两项为系数的二次方程an-1x2-anx+1=0都有相同的根α、β,且满足3α-αβ+3β=1,
(1)求证:{an-}是等比数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前5项和S5.
已知椭圆的中心在原点,焦点在x轴上,连接它的四个顶点得到的四边形的面积是4,分别连接椭圆上一点(顶点除外)和椭圆的四个顶点,连得线段所在四条直线的斜率的乘积为
,求这个椭圆的标准方程。
已知圆的方程x2+y2=25,点A为该圆上的动点,AB与x轴垂直,B为垂足,点P分有向线段BA的比λ=,
(1)求点P的轨迹方程并化为标准方程形式;
(2)写出轨迹的焦点坐标和准线方程。