(本小题满分12分)袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量的分布列和数学期望;
(Ⅲ)计分介于20分到40分之间的概率
已知全集,集合
,
(1)求;(2)求
设函数
(1)当时,求
的极值;
(2)当时,求
的单调区间;
(3)当时,对任意的正整数
,在区间
上总有
个数使得
成立,试求正整数
的最大值。
设椭圆的离心率
,右焦点到直线
的距离
为坐标原点。
(I)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直线
的距离为定值,并求弦
长度的最小值.
本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为
;两人租车时间都不会超过四小时。
(Ⅰ)求出甲、乙两人所付租车费用相同的概率;
(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求
的分布列与数学期望
;
如图甲,直角梯形中,
,
,点
、
分别在
,
上,且
,
,
,
,现将梯形
沿
折起,使平面
与平面
垂直(如图乙).
(Ⅰ)求证:平面
;
(Ⅱ)当的长为何值时,二面角
的大小为
?