在直角坐标系
中,已知点
,点
在
三边围成的区域(含边界)上.
(1)若
,求
;
(2)设
(
),用
表示
,并求的最大值.
四面体
及其三视图如图所示,过棱
的中点
作平行于
的平面分别交四面体的棱
于点
.
(1)证明:四边形
是矩形;
(2)求直线
与平面
夹角
的正弦值.
的内角
所对的边分别为
.
(1)若
成等差数列,证明:
;
(2)若
成等比数列,求
的最小值.
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为时,
为正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直线
,且
和
有且只有一个公共点
,
(ⅰ)证明直线
过定点,并求出定点坐标;
(ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
设函数
(
为常数,
是自然对数的底数).
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)若函数
在
内存在两个极值点,求
的取值范围.