估算的大小(误差小于1)
(1)如图①, 的面积是 ,点 是 的中点,连接 的面积是_____.
(2)如图②,四边形 的面积是 ,点 分别是一组对边 的中点,连接 ,则四边形 的面积是_____.
(3)如图③,点 分别是一组对边 上的点,且 ,若四边形 的面积是 ,连接 ,则四边形 的面积是_____.
(4)如图④, 的面积是 ,点 从点 出发沿 以每秒 个单位长的速度向点 运动,点 从点 出发沿 以每秒 个单位长的速度向点 运动.点 分别从点 同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形 的面积的值是否随着时间 的变化而变化?若不变,请求出这个值;若变化,说明怎样变化的.
问题探究:
(1)请你在图①中做一条直线,使它将矩形 分成面积相等的两部分;
(2)如图②,点 是矩形 内一点,请你在图②中过 点作一条直线,使它将矩形 分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系 中,多边形 的顶点坐标分别是 .若直线 经过点 ,且将多边形 分割成面积相等的两部分,求直线 的函数表达式.
如图,四边形 是正方形 的内接四边形, 与 都是锐角,已知 ,四边形 的面积为 .求正方形 的面积.
如图,四边形 是 的内接四边形。
(1)若 或 ,求证 ;
(2)若 ,问是否能推出 或 ?证明你的结论.
如图,已知 的面积分别为 , , , ,求 .