下图是《驾驶员守则》中的安全距离图示和部分安全距离表格:
请根据图表计算
⑴如果驾驶员的反应时间一定,请在表格中填上A的数据;
⑵如果路面情况相同,请在表格中填上B、C的数据;
⑶如果路面情况相同,一名喝了酒的驾驶员发现前面50m处有一队学生正在横穿马路,此时他的车速为72km/h,而他的反应时间比正常时慢了0.1s,请问他能在50m内停下来吗?
如图所示,在坐标系xOy第二象限内有一圆形匀强磁场区域(图中未画出),磁场方向垂直xOy平面.在x轴上有坐标(-2l0,0)的P点,三个电子a、b、c以相等大小的速度沿不同方向从P点同时射入磁场区,其中电子b射入方向为+y方向,a、c在P点速度与b速度方向夹角都是θ=.电子经过磁场偏转后都垂直于y轴进入第一象限,电子b通过y轴Q点的坐标为y=l0,a、c到达y轴时间差是t0.在第一象限内有场强大小为E,沿x轴正方向的匀强电场.已知电子质量为m、电荷量为e,不计重力.求:
(1) 电子在磁场中运动轨道半径和磁场的磁感应强度B.
(2) 电子在电场中运动离y轴的最远距离x.
(3) 三个电子离开电场后再次经过某一点,求该点的坐标和先后到达的时间差Δt.
如图甲所示,水平天花板下悬挂一光滑的轻质的定滑轮,跨过定滑轮的质量不计的绳(绳承受拉力足够大)两端分别连接物块A和B,A的质量为m0,B的质量m是可以变化的,当B的质量改变时,可以得到A加速度变化图线如图乙所示,不计空气阻力和所有的摩擦,A加速度向上为正.
(1) 求图乙中a1、a2和m1的大小.
(2) 根据牛顿定律和运动学规律,证明在A和B未着地或与滑轮接触时,AB系统机械能守恒.
(3) 若m0=0.8kg,m=1.2kg,AB开始都在离水平地面H=0.5m处,由静止释放AB,且B着地后不反弹,求A上升离水
平地面的最大高度.(g取10m/s2)
如图所示,在光滑的水平地面上有一块长木板,其左端固定一挡板,挡板和长木板的总质量为m1 =3kg,其右端放一质量为m2= 1kg的小滑块,长木板的右端到挡板的距离为L=lm,整个装置处于静止状态。现对小滑块施加一水平拉力,将它拉到长木板的正中央时立即撤去拉力,此过程中拉力做功W=20J。此后小滑块与挡板碰撞(碰撞过程无机械能损失,碰撞时间极短),最终小滑块恰好未从长木板上掉下来。在小滑块与长木板发生相对运动的整个过程中,系统因摩擦产生热量Q=12J。求:
(1)小滑块最终的速度大小;
(2)碰撞结束时,小滑块与长木板的速度;
(3)在小滑块与长木板发生相对运动的整个过程中,小滑块运动的位移大小。
如图,顶角为90°的光滑金属导轨MON固定在水平面上,导轨MO、NO的长度相等,M、N两点间的距离l=2m,整个装置处于磁感应强度大小B=0.5T、方向竖直向下的匀强磁场中。一根粗细均匀、单位长度电阻值r=0.5Ω/m的导体棒在垂直于棒的水平拉力作用下,从MN处以速度v=2m/s沿导轨向右匀速滑动,导体棒在运动过程中始终与导轨接触良好,不计导轨电阻,求:
⑴导体棒刚开始运动时所受水平拉力F的大小;
⑵开始运动后0.2s内通过导体棒的电荷量q;
⑶导体棒通过整个金属导轨的过程中产生的焦耳热Q。
如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E、宽度为L。在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,圆形磁场区域半径为r。当一带正电的粒子(质量为m,电荷量为q)从A点静止释放后,在M点离开电场,并沿半径方向射入磁场区域,磁感应强度为B,粒子恰好从N点射出,O为圆心,∠MON=120°,粒子重力忽略不计。求:
(1)粒子经电场加速后,进入磁场时速度v的大小;
(2)匀强磁场的磁感应强度B的大小和粒子在电场、磁场中运动的总时间t;
(3)若粒子在离开磁场前某时刻,磁感应强度方向不变,大小突然变为B1,此后粒子恰好被束缚在该磁场中,则B1的最小值为多少?