(本小题满分14分)已知四棱锥的底面
为菱形,且
,
,
与
相交于点
.
(Ⅰ)求证:底面
;
(Ⅱ)求直线与平面
所成角的正弦值;
(Ⅲ)若是
上的一点,且
,求
的值.
(本小题满分13分) 在中,角
、
、
所对的边分别为
,
.
(Ⅰ)求角的大小;
(Ⅱ)若,求函数
的最小正周期和单调递增区间.
(本小题满分13分)已知集合,其中
,
表示和
中所有不同值的个数.
(Ⅰ)设集合,
,分别求
和
;
(Ⅱ)若集合,求证:
;
(Ⅲ)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?
(本小题满分14分)已知点是离心率为
的椭圆
:
上的一点.斜率为
的直线
交椭圆
于
、
两点,且
、
、
三点不重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线、
的斜率之和为定值.
已知函数(
,实数
,
为常数).
(Ⅰ)若,求
在
处的切线方程;
(Ⅱ)若,讨论函数
的单调性.