一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车所用时间为20秒;若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?
如图:
若设快车每秒钟行x米,慢车每秒行y米.
根据题意填空:
(1)若同向而行,经过20秒快车行驶路程比慢车行驶路程多____米,可列方程_________.
(2)若相向而行,两车4秒钟共行驶__________米,可列方程__________________.
(3)由以上可得方程组__________________,解得________.
(本题12分)已知直线AB分别交、
轴于A(4,0)、B两点,C(-4,
)为直线AB上且在第二象限内一点,若△COA的面积为8,
(1)如图1,求C点坐标;
(2)如图2,点M为第二象限内一点,CM⊥OM于M,CN⊥轴于N,连MN,求证:
的值;
(3)如图3,过C作CN⊥轴于N,G为第一象限内一点,且∠NGO=45°,试探究GC2、GN2与GO2之间的数量关系并说明理由.
(本题10分)如图,已知四边形ABCD中,AD=4,CD=3,AB=AC,
(1)如图1,若∠CAB=60°,∠ADC=30°,求BD的长;
(2)如图2,若∠CAB=90°,∠ADC=45°,求BD的长.
(本题8分)如图,四边形ABCD中,∠ABC=90°,CD⊥AD,,
(1)求证:AB=BC;
(2)过点B作BE⊥AD于E,若四边形ABCD的面积为,求BE的长.
(本题7分)化简求值.
已知:,求式子
的值.
本题6分)如图,平面直角坐标系中,
(1)取点A(2,1)、点B(-3,4),则线段AB的长为;
(2)若点A的坐标为A(,
),点B的坐标为A(
,
),则线段AB的长为(用含
、
、
、
的式子表示);
(3)△ABC中,已知点A(2,-2)、点B(-3,-1)、点C(-1、-4),请运用(2)中的结论,不画图,用代数方法判断并证明△ABC的形状.