游客
题文

(本小题满分12分)函数
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论的大小关系;
(Ⅲ)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

科目 数学   题型 解答题   难度 容易
知识点: 组合几何
登录免费查看答案和解析
相关试题

设命题;命题:不等式对任意恒成立.若为真,且为真,求的取值范围.

求经过直线的交点M,且满足下列条件的直线方程:
(1)与直线2x+3y+5=0平行; (2)与直线2x+3y+5=0垂直.

已知实数函数为自然对数的底数).
(Ⅰ)求函数的单调区间及最小值;
(Ⅱ)若对任意的恒成立,求实数的值;
(Ⅲ)证明:

某校课外兴趣小组的学生为了给学校边的一口被污染的池塘治污,他们通过实验后决定在池塘中投放一种能与水中的污染物质发生化学反应的药剂.已知每投放个单位的药剂,它在水中释放的浓度(克/升)随着时间(天)变化的函数关系式近似为,其中若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求的最小值.

若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求
(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号