(本小题满分12分)函数,
.
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论与
的大小关系;
(Ⅲ)是否存在,使得
对任意
成立?若存在,求出
的取值范围;若不存在,请说明理由.
设命题;命题
:不等式
对任意
恒成立.若
为真,且
或
为真,求
的取值范围.
求经过直线的交点M,且满足下列条件的直线方程:
(1)与直线2x+3y+5=0平行; (2)与直线2x+3y+5=0垂直.
已知实数函数
(
为自然对数的底数).
(Ⅰ)求函数的单调区间及最小值;
(Ⅱ)若≥
对任意的
恒成立,求实数
的值;
(Ⅲ)证明:
某校课外兴趣小组的学生为了给学校边的一口被污染的池塘治污,他们通过实验后决定在池塘中投放一种能与水中的污染物质发生化学反应的药剂.已知每投放个单位的药剂,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值.
若数列满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(Ⅰ)证明数列是“平方递推数列”,且数列
为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为
,即
,求
;
(Ⅲ)在(Ⅱ)的条件下,记,求数列
的前
项和
,并求使
的
的最小值.