游客
题文

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(1)计算:
(2)计算:

(本小题满分14分)若集合具有以下性质:

②若,则,且时,.
则称集合是“好集”.
(Ⅰ)分别判断集合,有理数集是否是“好集”,并说明理由;
(Ⅱ)设集合是“好集”,求证:若,则
(Ⅲ)对任意的一个“好集”分别判断下面命题的真假,并说明理由.
命题:若,则必有
命题:若,且,则必有

(本小题满分13分)已知椭圆:的右焦点为,离心率为.
(Ⅰ)求椭圆的方程及左顶点的坐标;
(Ⅱ)设过点的直线交椭圆两点,若的面积为,求直线的方程.

(本小题满分13分)已知函数,其中是常数.
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)求在区间上的最小值.

(本小题满分13分)在四棱锥中,底面是菱形,.
(Ⅰ)若,求证:平面
(Ⅱ)若平面,求证:
(Ⅲ)在棱上是否存在点(异于点)使得∥平面,若存在,求的值;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号