(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.
(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin
的最大值,
交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,
8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段,从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制直方图如图所示.
(1)这20个路段轻度拥堵、中度拥堵的路段各有多少个?
(2)从这20个路段中随机抽出的3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.
已知各项均不为零的数列,其前n项和
满足
;等差数列
中
,且
是
与
的等比中项
(1)求和
,
(2)记,求
的前n项和
.
如图,在几何体中,点
在平面ABC内的正投影分别为A,B,C,且
,
,E为
中点,
(1)求证;CE∥平面,
(2)求证:求二面角的大小.
已知向量.
(1)求函数的单调增区间;
(2)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积,
求b+c的值.
一次函数是
上的增函数,
,已知
.
(1)求;
(2)若在
单调递增,求实数
的取值范围;
(3)当时,
有最大值
,求实数
的值.