设,
为偶数,证明
≥
.
已知各项均为正数的数列的首项
,
是数列
的前n项和,且满足:
.
(1)若,
,
成等比数列,求实数
的值;
(2)若,求
.
如图,是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,且
的造价分别为
万元/百米,
万元/百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求解析式;
(2)当为多少时,总造价
最低?并求出最低造价.
如图,在四棱锥中,已知底面
为矩形,
平面
,点
为棱
的中点,求证:
(1)平面
;
(2)平面平面
.
在锐角三角形中,角
的对边为
,已知
,
,
(1)求;
(2)若,求
.
如图,由若干个小正方形组成的k层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k层有k个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k层的每个小正方形用数字进行标注,从左到右依次记为,其中
(
),其它小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为
.
(1)当k=4时,若要求为2的倍数,则有多少种不同的标注方法?
(2)当k=11时,若要求为3的倍数,则有多少种不同的标注方法?