在平面直角坐标系中,已知圆
,
圆.
(Ⅰ)若过点的直线
被圆
截得的弦长为
,求直线
的方程;
(Ⅱ)圆是以1为半径,圆心在圆
:
上移动的动圆 ,若圆
上任意一点
分别作圆
的两条切线
,切点为
,求
的取值范围 ;
(Ⅲ)若动圆同时平分圆
的周长、圆
的周长,如图所示,则动圆
是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
(本小题满分12分)
已知某单位有50名职工,从中按系统抽样抽取10名职工,分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示。
(Ⅰ)求该样本的方差;
(Ⅱ)从这10名职工中随机抽取两名体重不轻于73公斤的职工,求体重为76公斤的职工被抽取到的概率。
(本小题满分12分)
已知向量,
,函数
.
(Ⅰ)求的最小正周期;
(Ⅱ)若,求
的最大值和最小值.
设函数,其中
(1)当时,讨论函数f(x)的单调性;
(2)若函数仅在
处有极值,求
的取值范围;
(3)若对于任意的,不等式
在[-1,1]上恒成立,求b的取值范围.
已知各项均为正数的数列前
项和为
,首项为
,且
成等差数列.
(1)求数列的通项公式;
(2)若,设
,求数列
的前
项和
.
已知函数为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(1)求的值;
(2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.