游客
题文

(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知函数
(I)(i)求函数的图象的交点A的坐标;
(ii)设函数的图象在交点A处的切线分别为是否存在这样的实数a,使得?若存在,请求出a的值和相应的点A坐标;若不存在,请说明理由。
(II)记上最小值为F(a),求的最小值。

已知抛物线在x轴的正半轴上,过M的直线与C相交于A、B两点,O为坐标原点。
(I)若m=1,且直线的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线绕点M如何转动,使得恒为定值。

如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。
(I)求证:PA//平面EFG;
(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。

某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完。
(I)求编号为奇数的小球放入到编号为奇数的盒子中的概率值;
(II)当一个小球放到其中一个盒子时, 若球的编号与盒子的编号相同 ,称这球是“放对”的,否则称这球是“放错”的。设“放对”的球的个数为的分布列及数学期望。

已知是数列的前n项和,满足关系式
n≥2,n为正整数).
(1)令,证明:数列是等差数列;
(2)求数列的通项公式;
(3)对于数列,若存在常数M>0,对任意的,恒有
M成立,称数列为“差绝对和有界数列”,
证明:数列为“差绝对和有界数列”.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号