已知直线被两平行直线
和
所截得的线段长为9,且直线过点
,求直线
的方程.
已知数列和
满足:
,其中
为实数,
为正整数.
(1)对任意实数,求证:
不成等比数列;
(2)试判断数列是否为等比数列,并证明你的结论.
如图,直四棱柱底面
直角梯形,
∥
,
,
是棱
上一点,
,
,
,
,
.
(1)求异面直线与
所成的角;
(2)求证:平面
.
已知函数常数
)满足
.
(1)求出的值,并就常数
的不同取值讨论函数
奇偶性;
(2)若在区间
上单调递减,求
的最小值;
(3)在(2)的条件下,当取最小值时,证明:
恰有一个零点
且存在递增的正整数数列
,使得
成立.
阅读:
已知、
,
,求
的最小值.
解法如下:,
当且仅当,即
时取到等号,
则的最小值为
.
应用上述解法,求解下列问题:
(1)已知,
,求
的最小值;
(2)已知,求函数
的最小值;
(3)已知正数、
、
,
,
求证:.
已知数列和
的通项公式分别为
,
.将
与
中的公共项按照从小到大的顺序排列构成一个新数列记为
.
(1)试写出,
,
,
的值,并由此归纳数列
的通项公式;
(2)证明你在(1)所猜想的结论.