如图所示,质量为m的砝码A放置在质量为M的滑块B上,B与弹簧相连,它们一起在光滑的水平面上作简谐运动,弹簧的劲度系数为k,砝码与滑块之间的动摩擦因数为,要使砝码与滑块在振动过程中不发生相对运动,问最大振幅等于多少?(设最大静摩擦力等于滑动摩擦力)
如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。现测得转台半径R="0.5" m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m。设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2。求:
(1)物块做平抛运动的初速度大小v0;
(2)物块与转台间的动摩擦因数μ。
(10分)如图所示,质量为15kg的物体用两根绳子AO和BO吊挂在天花板下处于静止状态,绳AO、BO与竖直方向的夹角分别为53°、37°。(sin37°=0.6,cos37°=0.8,取g=10m/s2)
(1)求两根绳子受到的拉力大小。(6分)
(2)如果绳AO、BO的最大承受力都是200N,为了使绳子不被拉断,则所挂的重物的质量最多不能超过多少?(4分)
某一长直的赛道上,有一辆F1赛车,前方200m处有一安全车正以的速度匀速前进,这时赛车从静止出发以
的加速度追赶;求:
(1)赛车出发多长时间追上安全车?( 5分)
(2)当赛车刚追上安全车时,赛车手立即刹车,使赛车以的加速度做匀减速直线运动,再经过多长时间两车第二次相遇?
一质点从A点静止开始以1m/s2的加速度匀加速运动,经5s后达B作匀速运动,又经4s到C点,最后2秒的时间使质点从C点匀减速到D点速度为零,则:
(1)质点匀速运动的速度是多大?
(2)减速运动时的加速度是多大?
(3)AD相距多远?
如图所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,装置静时细线AB水平,细线AC与竖直方向的夹角θ=37º。已知小球的质量m=1kg,细线AC长L=1m,B点距C点的水平和竖直距离相等。(重力加速度g取10m/s2,sin37º=0.6,cos37º=0.8)
(1)若装置匀速转动的角速度为ω1时,细线AB上的张力为0而细线AC与竖直方向的夹角仍为37°,求角速度ω1的大小;
(2)若装置匀速转动的角速度为ω2时,细线AB刚好竖直,且张力为0,求此时角速度ω2的大小;
(3)装置可以以不同的角速度匀速转动,试通过计算在坐标图中画出细线AC上张力T随角速度的平方ω2变化的关系图像