(本题12分)
已知数列的前
项和
满足
,等差数列
满足
,
。
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,问
>
的最小正整数
是多少?
已知函数,
.
(1)设是函数
的一个零点,求
的值;
(2)求函数的单调递增区间.
设关于的不等式
的解集为
,不等式
的解集为
.
(Ⅰ)当时,求集合
;(Ⅱ)若
,求实数
的取值范围.
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,
求实数的取值范围.
已知椭圆C:.
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,
且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围;
已知为等差数列,且
(1)求数列的通项公式;
(2)的前
项和为
,若
成等比数列,求正整数
的值。