若是函数
在点
附近的某个局部范围内的最大(小)值,则称
是函数
的一个极值,
为极值点.已知
,函数
.
(Ⅰ)若,求函数
的极值点;
(Ⅱ)若不等式恒成立,求
的取值范围.
(为自然对数的底数)
(本小题满分10分)选修4-1几何证明选讲
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明: AD·DE=2PB2.
已知函数
(Ⅰ)若函数在
上位增函数,求
的取值范围.
(Ⅱ)求在区间
上的最小值;
(Ⅲ)若在区间
上恰有两个零点,求
的取值范围.
已知椭圆:
的离心率为
,右顶点
是抛物线
的焦点.直线
:
与椭圆
相交于
,
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果,点
关于直线
的对称点
在
轴上,求
的值.
如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E为PC的中点,DE=EC
(1)求证:平面
(2)设PA = a,若平面EBD与平面ABCD所成锐二面角的为,求a的值。
(1)设点是区域
内的随机点,求函数
在区间
上是增函数的概率;
(2)设点是区域
内的随机点,求函数
在区间
上是增函数的概率;