游客
题文

(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分12分)
在△ABC中,已知,B=45°求及c 。

(13分)
已知函数
(I)当时,求曲线在点处的切线方程;
(Ⅱ)当函数在区间上的最小值为时,求实数的值;
(Ⅲ)若函数的图象有三个不同的交点,求实数的取值范围。

. (12分)
已知函数f(x)= ,(p≠0)是奇函数.
(1)求m的值.
(2)若p>1,当x∈[1,2]时,求f(x)的最大值和最小值.

(12分)
已知a、b、c是互不相等的非零实数.
求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

设复数,试求实数m取何值时
(1)Z是实数;
(2)Z是纯虚数;
(3)Z对应的点位于复平面的第一象限

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号