数列的前
项和记为
,且满足
.
(1)求数列的通项公式;
(2)求和;
(3)设有项的数列
是连续的正整数数列,并且满足:
.
问数列最多有几项?并求这些项的和.
已知椭圆的离心率
,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点
,已知点
的坐标为
,点
在线段
的垂直平分线上,且
,求
的值.
已知椭圆G:.过点(m,0)作圆
的切线l交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求
的最大值.
已知点,圆C:
与椭圆E:
有一个公共点
,
分别是椭圆的左、右焦点,直线
与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.
如图,动点与两定点
、
构成
,且
,设动点
的轨迹为
.
(1)求轨迹的方程;
(2)设直线与
轴相交于点
,与轨迹
相交于点
,且
,求
的取值范围.
已知双曲线的中心在原点,离心率为2,一个焦点为F(-2,0).
(1)求双曲线方程;
(2)设Q是双曲线上一点,且过点F,Q的直线l与y轴交于点M,若= 2
,求直线l的方程.