某旅游团上午8时从旅馆出发,乘汽车到距离180千米的某著名旅游景点游玩,该汽车离旅馆的距离S(千米)与时间t (时)的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:
(1)求该团去景点时的平均速度是多少?
(2)该团在旅游景点游玩了多少小时?
(3)求出返程途中S(千米)与时间t (时)的函数关系式,并求出自变量t的取值范围.
甲、乙两同学在一次百米赛跑中,路程S(米)与时间t(秒)之间的关系如图所示.根据图象回答下列问题:
(1)3.8秒时,哪位同学处于领先位置?
(2)在这次赛跑中,哪位同学先到达终点?比另一个同学早多少时间到达?约几秒后哪位同学被哪位同学追上?
(3)甲同学所走的路程S(米)与时间t(秒)之间的函数关系式.
先化简再求值:,其中:
,
.
如图,求图中直线的函数表达式:
如图,直线l的解析式为,它与坐标轴分别交于A、B两点,其中B坐标为(0,4).
(1)求出A点的坐标;
(2)若点 P在y轴上,且到直线l的距离为3,试求点P的坐标;
(3)在第一象限的角平分线上是否存在点Q使得∠QBA=90°;若存在,求点Q的坐标,若不存在,请说明理由.
(4)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C运动所有的时间t,使得△ABC为轴对称图形.
如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.
(1)若Q的运动速度与P的速度相等,经过多少秒后?△BPD与△CQP全等.
(2)若Q的速度与点P的速度不相等,当Q的速度为多少时,能够使△BPD与△CQP全等?