(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(理)某种型号汽车四个轮胎半径相同,均为,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为
(假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路
(如图(1)所示,其中
(
)),且前轮
已在
段上时,后轮中心在
位置;若前轮中心到达
处时,后轮中心在
处(假定该汽车能顺利驶上该上坡路). 设前轮中心在
和
处时与地面的接触点分别为
和
,且
,
. (其它因素忽略不计)
(1)如图(2)所示,和
的延长线交于点
,
求证:(cm);
(2)当=
时,后轮中心从
处移动到
处实际移动了多少厘米? (精确到1cm)
已知命题;
若
是
的充分非必要条件,试求实数
的取值范围.
(本小题满分12分)已知平面上一定点和一定直线
为该平面上一动点,作
,垂足为
,且
(1)问点在什么曲线上?并求出该曲线的方程;
(2)设直线与(1)中的曲线交于不同的两点
,是否存在实数
,使得以线段
为直径的圆经过点
?若存在,求出
的值,若不存在,说明理由.
已知中心在原点的椭圆的左焦点
,右顶点
.
(1)求椭圆的标准方程;
(2)斜率为的直线
与椭圆
交于
两点,求弦长
的最大值及此时
的直线方程.
已知直线交双曲线
于
不同两点,若点
是线段
的中点,求直线
的方程及线段
的长度
已知椭圆与双曲线共焦点,且过(
)
(1)求椭圆的标准方程.
(2)求斜率为2的椭圆的一组平行弦的中点轨迹方程;