(本小题满分12分)已知平面上一定点和一定直线
为该平面上一动点,作
,垂足为
,且
(1)问点在什么曲线上?并求出该曲线的方程;
(2)设直线与(1)中的曲线交于不同的两点
,是否存在实数
,使得以线段
为直径的圆经过点
?若存在,求出
的值,若不存在,说明理由.
已知函数
(1)求函数的单调区间;
(2)若当时(其中
),不等式
恒成立,求实数
的取值范围;
(3)若关于的方程
在区间
上恰好有两个相异的实根,求实数
的取值范围.
已知
(1)求的值;
(2)求角.
(本小题满分10分)选修4-5:不等式选讲
对于任意的实数和
,不等式
恒成立,记实数
的最大值是
.
(1)求的值;
(2)解不等式.
(本小题满分10分)【选修4—1:几何证明选讲】
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线
,已知过点
的直线
的参数方程为
(
为参数),直线
与曲线
分别交于
两点。
(1)写出曲线和直线
的普通方程;
(2)若成等比数列,求
的值.
(本小题满分10分)【选修4—1:几何证明选讲】
如图,在正中,点
分别在边
上,且
,
,
相交于点
(1)求证:四点共圆;
(2)若正的边长为2,求,
所在圆的半径.