如图所示,直线OA与x轴成135°角,x轴上下方分别有水平向右的匀强电场E1和竖直向上的匀强电场E2,且电场强度E1=E2=10N/C,x轴下方还存在垂直于纸面向外的匀强磁场B,磁感应强度B=10T。现有一质量m=1.0×10-5kg,电荷量q=1.0×10-5C的带正电尘粒在OA直线上的A点静止释放,A点离原点O的距离d=m(g取10m/s2,).求:
(1)尘粒刚进入磁场区域时的速度v的大小;
(2)从进入磁场区域开始到离开磁场区域所经历的时间t;
(3)第一次回到OA直线上的某位置离原点O的距离L。
某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面上的B点,其水平位移S1=3.6m.着地时由于存在能量损失,着地后速度变为v=4m/s,并以此为初速沿水平地面滑行S2=8m后停止.已知人与滑板的总质量m=60kg.试求:
(1)人与滑板在水平地面滑行时受到的平均阻力的大小;
(2)人与滑板离开平台时的水平初速度大小(空气阻力忽略不计,取当地的重力加速度).
已知地球表面的重力加速度为g=10m/s2,地球半径为R=6.4106m,求离地高度为地球半径3倍的人造地球卫星的线速度.
如图所示,光滑的1/4圆弧轨道AB、EF,半径AO、0′F均为R且水平.质量为m、长度也为R的小车静止在光滑水平面CD上,小车上表面与轨道AB、EF的末端B、E相切.一质量为m的物体(可视为质点)从轨道AB的A点由静止开始下滑,由末端B滑上小车,小车立即向右运动.当小车右端与壁DE刚接触时,物体m恰好滑动到小车右端且相对于小车静止,同时小车与壁DE相碰后立即停止运动但不粘连,物体继续运动滑上圆弧轨道EF,以后又滑下来冲上小车.求:
(1)物体m滑上轨道EF的最高点相对于E点的高度h
(2)水平面CD的长度;
(3)当物体再从轨道EF滑下并滑上小车后,小车立即向左运动.如果小车与壁BC相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端多远?
如图所示,绷紧的传送带与水平面的夹角θ=300,皮带在电动机的带动下,始终保持V="2" m/s的速率运行.现把一质量m="10" kg的工件(可看做质点)轻轻放在皮带的底端,经时间t="1.9" s,工件被传送到h="1.5" m的高处,取g="10" m/s2.求:
(1)工件与皮带间的动摩擦因数;
(2)电动机由于传送工件多消耗的电能
如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
(1)求两星球做圆周运动的周期:
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2。已知地球和月球的质量分别为和
。求T2与T1两者平方之比。(结果保留3位小数)