(本小题满分12分)如图,在平面直角坐标系
中,以
轴为始边做两个锐角
,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为
.
(1)求
的值; (2)求
的值.
如图所示,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=
,延长CE交AB于点F,求△BCF外接圆的半径.
已知椭圆
的离心率为
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线
相切..
(1)求椭圆C的标准方程;
(2)若直线
与椭圆C相交于A、B两点,且
,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
已知函数
=
,
为常数.
(1)当
=1时,求
的单调区间;
(2)若函数
在区间[1,2]上为单调函数,求
的取值范围.
为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;
(2)用简单随机抽样方法从这
条道路中抽取
条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过
的概率.
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(1)求证:
平面
;
(2)求证:
;
(3)设PD=AD=
, 求三棱锥B-EFC的体积.