(12分)我们把同时满足下列两个性质的函数称为“和谐函数” :
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间,使得函数在区间
上的值域为
.
⑴已知幂函数的图像经过点
,判断
是否是和谐函数?
⑵判断函数是否是和谐函数?
⑶若函数是和谐函数,求实数
的取值范围.
(本小题满分10分). 已知命题p:方程表示焦点在y轴上的椭圆;
命题q:双曲线的离心率
;
若“”为真,“
”为假,求实数
的取值范围.
(本小题满分12分)
已知椭圆E的两个焦点分别为F1(-1,0), F2 (1,0), 点(1, )在椭圆E上.
(1)求椭圆E的方程
(2)若椭圆E上存在一点 P, 使∠F1PF2=30°, 求△PF1F2的面积.
.(本小题满分12分)
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,
E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD的夹角的大小.
(本小题满分14分)
某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,
(1)写出月销售量Q(百件)与销售价格P(元)的函数关系。
(2)该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?
(3)当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。
(本小题满分12分)
直线l经过点,且和圆C:
相交,截得弦长为
,求l的方程.