(本小题满分10分)
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)判断性别与休闲方式是否有关系.
已知函数,其中
.
(Ⅰ)求的单调区间;
(Ⅱ)若在
上存在最大值和最小值,求
的取值范围.
已知抛物线:
,过点
(其中
为正常数)任意作一条直线
交抛物线
于
两点,
为坐标原点.
(1)求的值;
(2)过分别作抛物线
的切线
,试探求
与
的交点是否在定直线上,证明你的结论.
如图,在斜三棱柱中,点
、
分别是
、
的中点,
平面
.已知
,
.
(Ⅰ)证明:平面
;
(Ⅱ)求异面直线与
所成的角;
(Ⅲ)求与平面
所成角的正弦值.
甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得
分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率为
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
.
(Ⅰ)求的值;
(Ⅱ)设表示比赛停止时比赛的局数,求随机变量
的分布列和数学期望
.
若的图像与直线
相切,并且切点横坐标依次成公差为
的等差数列.
(1)求和
的值;
(2)在⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边.若是函数
图象的一个对称中心,且a=4,求⊿ABC外接圆的面积.