已知中心在原点O,焦点在x轴上的椭圆E过点(1,
),离心率为
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.
(本小题满分12分)某高校在2011年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85), 第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(ⅱ)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有
名学生被考官D面试,求
的分布列和数学期望.
(本小题满分12分)已知等差数列
的公差大于0,且
是方程
的两根,数列
的前n项的和为
,且
.
(1)求数列
,
的通项公式;
(2)记
,求证:
.
(本小题满分12分)如图,在四棱锥
中,
底面
,且底面
为正方形,
分别为
的中点.
(1)求证:
平面
;
(2)求平面
和平面
的夹角.
设函数
.
(1)求函数
的最小正周期和单调递增区间;
(2)当
时,
的最大值为2,求
的值,并求出
的对称轴方程.
已知函数
∈R).
(1)若
,求
点(
)处的切线方程;
(2)设a≤0,求
的单调区间;
(3)设a<0,且对任意的
,
≤
,试比较
与
的大小.