在极坐标系中,已知两点O(0,0),B(2,
).
(Ⅰ)求以OB为直径的圆C的极坐标方程,然后化成直角坐标方程;
(Ⅱ)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
如图,已知圆内接四边形
,
切圆
于点
,且与四边形
对角线
延长线交于点
,
切圆O于点
,且与
延长线交于点
,延长
交
于点
,若
.
(1)求证:;
(2)求证:四点共圆.
如图,和
都经过
两点,
是
的切线,交
于点
,
是
的切线,交
于点
,求证:
.
用分析法证明:若,则
.
画出解不等式(
)的程序框图.
甲乙两人进行掰手腕比赛,比赛规则规定三分钟为一局,三分钟内不分胜负为平局,当有一人赢3局就结束比赛,否则继续进行,根据以往经验,每次甲胜的概率为,乙胜的概率为
,且每局比赛胜负互不受影响.
(Ⅰ)求比赛4局乙胜的概率;
(Ⅱ)求在2局比赛中甲的胜局数为ξ的分布列和数学期望;
(Ⅲ)若规定赢一局得2分,平一局得1分,输一局得0分,比赛进行五局,积分有超过5分者比赛结束,否则继续进行,求甲得7分的概率.