如图,已知抛物线上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线与抛物线C交于两点
,
,且
(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到
.
(i)求实数a,b,k满足的等量关系;
(ii)的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.
在各项均为正数的数列中,前
项和
满足
。
(1)证明是等差数列,并求这个数列的通项公式及前
项和的公式;
(2)在平面直角坐标系面上,设点
满足
,且点
在直线
上,
中最高点为
,若称直线
与
轴、直线
所围成的图形的面积为直线
在区间
上的面积,试求直线
在区间
上的面积;
(3)求出圆心在直线上的圆,使得点列
中任何一个点都在该圆内部
在以为原点的直角坐标系中,点
为
的直角顶点,若
,且点
的纵坐标大于0
(1)求向量的坐标;
(2)是否存在实数,使得抛物线
上总有关于直线
对称的两个点?若存在,求实数
的取值范围,若不存在,说明理由;
若函数在点
处的切线方程为
(1)求的值;
(2)求的单调递增区间;
(3)若对于任意的,恒有
成立,求实数
的取值范围
将10个白小球中的3个染成红色,3个染成兰色,试解决下列问题:
(1)求取出3个小球中红球个数的分布列和数学期望;
(2)求取出3个小球中红球个数多于白球个数的概率
(本小题满分10分)选修4-5:不等式选讲
(Ⅰ)已知都是正实数,求证:
;
(Ⅱ)已知都是正实数,求证:
.