如图:在⊙O中,经过⊙O内一点P有一条弦AB,且AP=4,PB=3,过P点另有一动弦CD,连结AC,DB.设CP=x,PD=y.
(1)求证:△ACP∽△DBP;
(2)求y关于x的函数解析式;
(3)若CD=8时,求S△ACP:S△DBP的值.
已知在 中, 为 边的中点,连接 ,将 绕点 顺时针方向旋转(旋转角为钝角),得到 ,连接 , .
(1)如图1,当 且 时,则 与 满足的数量关系是 ;
(2)如图2,当 且 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图3,延长 到点 ,使 ,连接 ,当 , 时,求 的长.
如图,已知抛物线 与 轴相交于 , 两点,与 轴相交于点 ,对称轴是直线 ,连接 .
(1)求该抛物线的表达式;
(2)若过点 的直线 与抛物线相交于另一点 ,当 时,求直线 的表达式;
(3)在(2)的条件下,当点 在 轴下方时,连接 ,此时在 轴左侧的抛物线上存在点 ,使 .请直接出所有符合条件的点 的坐标.
如图, 是 的外接圆, 是 的直径, 是 延长线上一点,连接 , ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装载1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.
(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?
(2)经初步估算,公司要运往工厂的这批材料不超过1245箱.计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?
某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:
组别 |
锻炼时间(分 |
频数(人) |
百分比 |
|
|
12 |
|
|
|
|
|
|
|
18 |
|
|
|
6 |
|
|
|
3 |
|
(1)本次调查的样本容量是 ;表中 , ;
(2)将频数分布直方图补充完整;
(3)已知 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是 ;
(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?