某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):
甲班
成绩 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
4 |
20 |
15 |
10 |
1 |
乙班
成绩 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
1 |
11 |
23 |
13 |
2 |
(1)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;
(2)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;
(3)完成下面2×2列联表,你认为在犯错误的概率不超过0.025的前提下, “这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由。
|
成绩小于100分 |
成绩不小于100分 |
合计 |
甲班 |
![]() |
26 |
50 |
乙班 |
12 |
![]() |
50 |
合计 |
36 |
64 |
100 |
附:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分12分)已知等差数列的公差
,前
项和为
.
(1)若成等比数列,求
;
(2)若,求
的取值范围.
(本小题满分10分)若不等式的解集是
,求不等式
的解集.
(本小题满分12分)已知:函数对一切实数
都有
成立,且
.
(1)求的值;
(2)求的解析式;
(3)已知,设
:当
时,不等式
恒成立;
:当
时,
是单调函数.如果满足
成立的
的集合记为
,满足
成立的
的集合记为
,求
(
为全集).
(本小题满分12分)某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.
为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求的概率;
(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,
达到最小值.(只需写出结论)
(本小题满分12分)数列{}的前
项和为
,
是
和
的等差中项,等差数列{
}满足
,
.
(1)求数列,
的通项公式;
(2)若,求数列
的前
项和
.