已知二次函数为常数,且
)满足条件:
,且方程
有两个相等的实数根.
(1)求的解析式;
(2)求函数在区间上的最大值和最小值;
(3)是否存在实数使
的定义域和值域分别为
和
,如果存在,求出
的值,如不存在,请说明理由.
(本小题满分14分)
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差x(°C) |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数y(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(5分)
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(6分)
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(3分)
(参考公式: )
(本小题满分16分)点,点A1(x1,0),A2(x
,0),…,An(xn,0),…顺次为x轴上的点,其中x1=a(0<a≤1).对于任意n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.(1)求数列{yn}的通项公式,并证明它为等差数列;(2)求证:x
- x
是常数,并求数列{ x
}的通项公式;(3)上述等腰ΔAnBnAn+1中是否可能存在直角三角形,若可能,求出此时a的值;若不可能,请说明理由.
(本小题满分14分)已知函数(
为实数).
(I)若在
处有极值,求
的值;(II)若
在
上是增函数,求
的取值范围.
(本小题满分14分)已知:为常数)
(1)若,求
的最小正周期;(2)若
在[
上最大值与最小值之和为5,求
的值;(3)在(2)条件下
先按
平移后再经过伸缩变换后得到
求
.
(矩阵与变换)
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ) 求矩阵M; (Ⅱ) 设直线l在变换M作用下得到了直线m:x-y=4,求l的方程.