游客
题文

本小题满分12分)
今有一长2米宽1米的矩形铁皮,如图,在四个角上分别截去一个边长为x米的正方形后,沿虚线折起可做成一个无盖的长方体形水箱(接口连接问题不考虑).

(Ⅰ)求水箱容积的表达式,并指出函数的定义域;
(Ⅱ)若要使水箱容积不大于立方米的同时,又使得底面积最大,求x的值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知函数,在定义域内有且只有一个零点,存在, 使得不等式成立. 若是数列的前项和.
(I)求数列的通项公式;
(II)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(n为正整数),求数列的变号数;
(Ⅲ)设),使不等式
恒成立,求正整数的最大值

已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.

设函数
(Ⅰ)若函数处取得极小值是,求的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若函数上有且只有一个极值点, 求实数的取值范围.

在空间五面体ABCDE中,四边形ABCD是正方形,,. 点的中点. 求证:

(I)
(II)

(本小题15分)
已知函数.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)若函数在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,若在上至少存在一点,使得成立,求实数的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号