(本小题满分14分)
设函数
,其中
.
( I )若函数
图象恒过定点P,且点P在
的图象上,求m的值;
(Ⅱ)当
时,设
,讨论
的单调性;
(Ⅲ)在(I)的条件下,设
,曲线
上是否存在两点P、Q,
使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
已知函数f(x)=4cosωx·sin(ωx+
)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0,
]上的单调性.
已知α,β∈(0,π),且tanα=2,cosβ=-
.
(1)求cos2α的值;
(2)求2α-β的值.
已知函数f(x)=-
sin(2x+
)+6sinxcosx-2cos2x+1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[0,
]上的最大值和最小值.
设函数
.
(1) 当
时,求函数
的极值;
(2)若
,证明:
在区间
内存在唯一的零点;
(3)在(2)的条件下,设
是
在区间
内的零点,判断数列
的增减性.
如图,已知椭圆
的右焦点为
,点
是椭圆上任意一点,圆
是以
为直径的圆.
(1)若圆
过原点
,求圆
的方程;
(2)写出一个定圆的方程,使得无论点
在椭圆的什么位置,该定圆总与圆
相切,请写出你的探究过程. 