在平面直角坐标系中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。(1)求抛物线C的标准方程;(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。
已知函数 (1)当时,求不等式的解集; (2)若的解集包含,求的取值范围.
在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.
已知矩阵的逆矩阵,求矩阵的特征值.
已知函数若存在函数使得恒成立,则称是的一个“下界函数”. (I) 如果函数为实数为的一个“下界函数”,求的取值范围; (Ⅱ)设函数试问函数是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
已知椭圆C:的离心率为,右焦点到直线的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)若直线与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求△OAB的面积S的最大值.(其中O为坐标原点).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号